metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C56.49C23, C28.72C24, M4(2)⋊28D14, (D4×D7).C4, (Q8×D7).C4, C8○D4⋊8D7, (C2×C8)⋊23D14, D4⋊2D7.C4, Q8⋊2D7.C4, D4.13(C4×D7), C7⋊C8.33C23, Q8.14(C4×D7), D28.C4⋊13C2, (C2×C56)⋊26C22, C4○D4.43D14, D28.21(C2×C4), (C8×D7)⋊12C22, C7⋊2(Q8○M4(2)), Q8.Dic7⋊8C2, C8.56(C22×D7), C4.71(C23×D7), C8⋊D7⋊22C22, (D7×M4(2))⋊11C2, C28.39(C22×C4), C14.35(C23×C4), (C4×D7).37C23, D28.2C4⋊17C2, (C2×C28).514C23, Dic14.22(C2×C4), C4○D28.52C22, D14.16(C22×C4), C4.Dic7⋊27C22, (C7×M4(2))⋊28C22, Dic7.16(C22×C4), C4.39(C2×C4×D7), (C7×C8○D4)⋊9C2, C22.5(C2×C4×D7), (C2×C7⋊C8)⋊13C22, (D7×C4○D4).3C2, C7⋊D4.2(C2×C4), (C2×C8⋊D7)⋊28C2, C2.36(D7×C22×C4), (C4×D7).11(C2×C4), (C7×D4).17(C2×C4), (C7×Q8).18(C2×C4), (C2×C14).5(C22×C4), (C2×C4×D7).154C22, (C2×Dic7).38(C2×C4), (C7×C4○D4).44C22, (C22×D7).28(C2×C4), (C2×C4).607(C22×D7), SmallGroup(448,1203)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C56.49C23
G = < a,b,c,d | a56=b2=c2=d2=1, bab=a13, cac=a29, ad=da, bc=cb, bd=db, dcd=a28c >
Subgroups: 956 in 258 conjugacy classes, 147 normal (24 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C7, C8, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D7, C14, C14, C2×C8, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, Dic7, Dic7, C28, C28, D14, D14, D14, C2×C14, C2×M4(2), C8○D4, C8○D4, C2×C4○D4, C7⋊C8, C7⋊C8, C56, C56, Dic14, C4×D7, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C7×D4, C7×Q8, C22×D7, Q8○M4(2), C8×D7, C8⋊D7, C8⋊D7, C2×C7⋊C8, C4.Dic7, C2×C56, C7×M4(2), C2×C4×D7, C4○D28, D4×D7, D4⋊2D7, Q8×D7, Q8⋊2D7, C7×C4○D4, C2×C8⋊D7, D28.2C4, D7×M4(2), D28.C4, Q8.Dic7, C7×C8○D4, D7×C4○D4, C56.49C23
Quotients: C1, C2, C4, C22, C2×C4, C23, D7, C22×C4, C24, D14, C23×C4, C4×D7, C22×D7, Q8○M4(2), C2×C4×D7, C23×D7, D7×C22×C4, C56.49C23
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(2 14)(3 27)(4 40)(5 53)(6 10)(7 23)(8 36)(9 49)(11 19)(12 32)(13 45)(16 28)(17 41)(18 54)(20 24)(21 37)(22 50)(25 33)(26 46)(30 42)(31 55)(34 38)(35 51)(39 47)(44 56)(48 52)(57 61)(58 74)(59 87)(60 100)(62 70)(63 83)(64 96)(65 109)(67 79)(68 92)(69 105)(71 75)(72 88)(73 101)(76 84)(77 97)(78 110)(81 93)(82 106)(85 89)(86 102)(90 98)(91 111)(95 107)(99 103)(104 112)
(1 94)(2 67)(3 96)(4 69)(5 98)(6 71)(7 100)(8 73)(9 102)(10 75)(11 104)(12 77)(13 106)(14 79)(15 108)(16 81)(17 110)(18 83)(19 112)(20 85)(21 58)(22 87)(23 60)(24 89)(25 62)(26 91)(27 64)(28 93)(29 66)(30 95)(31 68)(32 97)(33 70)(34 99)(35 72)(36 101)(37 74)(38 103)(39 76)(40 105)(41 78)(42 107)(43 80)(44 109)(45 82)(46 111)(47 84)(48 57)(49 86)(50 59)(51 88)(52 61)(53 90)(54 63)(55 92)(56 65)
(57 85)(58 86)(59 87)(60 88)(61 89)(62 90)(63 91)(64 92)(65 93)(66 94)(67 95)(68 96)(69 97)(70 98)(71 99)(72 100)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(81 109)(82 110)(83 111)(84 112)
G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,14)(3,27)(4,40)(5,53)(6,10)(7,23)(8,36)(9,49)(11,19)(12,32)(13,45)(16,28)(17,41)(18,54)(20,24)(21,37)(22,50)(25,33)(26,46)(30,42)(31,55)(34,38)(35,51)(39,47)(44,56)(48,52)(57,61)(58,74)(59,87)(60,100)(62,70)(63,83)(64,96)(65,109)(67,79)(68,92)(69,105)(71,75)(72,88)(73,101)(76,84)(77,97)(78,110)(81,93)(82,106)(85,89)(86,102)(90,98)(91,111)(95,107)(99,103)(104,112), (1,94)(2,67)(3,96)(4,69)(5,98)(6,71)(7,100)(8,73)(9,102)(10,75)(11,104)(12,77)(13,106)(14,79)(15,108)(16,81)(17,110)(18,83)(19,112)(20,85)(21,58)(22,87)(23,60)(24,89)(25,62)(26,91)(27,64)(28,93)(29,66)(30,95)(31,68)(32,97)(33,70)(34,99)(35,72)(36,101)(37,74)(38,103)(39,76)(40,105)(41,78)(42,107)(43,80)(44,109)(45,82)(46,111)(47,84)(48,57)(49,86)(50,59)(51,88)(52,61)(53,90)(54,63)(55,92)(56,65), (57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,14)(3,27)(4,40)(5,53)(6,10)(7,23)(8,36)(9,49)(11,19)(12,32)(13,45)(16,28)(17,41)(18,54)(20,24)(21,37)(22,50)(25,33)(26,46)(30,42)(31,55)(34,38)(35,51)(39,47)(44,56)(48,52)(57,61)(58,74)(59,87)(60,100)(62,70)(63,83)(64,96)(65,109)(67,79)(68,92)(69,105)(71,75)(72,88)(73,101)(76,84)(77,97)(78,110)(81,93)(82,106)(85,89)(86,102)(90,98)(91,111)(95,107)(99,103)(104,112), (1,94)(2,67)(3,96)(4,69)(5,98)(6,71)(7,100)(8,73)(9,102)(10,75)(11,104)(12,77)(13,106)(14,79)(15,108)(16,81)(17,110)(18,83)(19,112)(20,85)(21,58)(22,87)(23,60)(24,89)(25,62)(26,91)(27,64)(28,93)(29,66)(30,95)(31,68)(32,97)(33,70)(34,99)(35,72)(36,101)(37,74)(38,103)(39,76)(40,105)(41,78)(42,107)(43,80)(44,109)(45,82)(46,111)(47,84)(48,57)(49,86)(50,59)(51,88)(52,61)(53,90)(54,63)(55,92)(56,65), (57,85)(58,86)(59,87)(60,88)(61,89)(62,90)(63,91)(64,92)(65,93)(66,94)(67,95)(68,96)(69,97)(70,98)(71,99)(72,100)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(81,109)(82,110)(83,111)(84,112) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(2,14),(3,27),(4,40),(5,53),(6,10),(7,23),(8,36),(9,49),(11,19),(12,32),(13,45),(16,28),(17,41),(18,54),(20,24),(21,37),(22,50),(25,33),(26,46),(30,42),(31,55),(34,38),(35,51),(39,47),(44,56),(48,52),(57,61),(58,74),(59,87),(60,100),(62,70),(63,83),(64,96),(65,109),(67,79),(68,92),(69,105),(71,75),(72,88),(73,101),(76,84),(77,97),(78,110),(81,93),(82,106),(85,89),(86,102),(90,98),(91,111),(95,107),(99,103),(104,112)], [(1,94),(2,67),(3,96),(4,69),(5,98),(6,71),(7,100),(8,73),(9,102),(10,75),(11,104),(12,77),(13,106),(14,79),(15,108),(16,81),(17,110),(18,83),(19,112),(20,85),(21,58),(22,87),(23,60),(24,89),(25,62),(26,91),(27,64),(28,93),(29,66),(30,95),(31,68),(32,97),(33,70),(34,99),(35,72),(36,101),(37,74),(38,103),(39,76),(40,105),(41,78),(42,107),(43,80),(44,109),(45,82),(46,111),(47,84),(48,57),(49,86),(50,59),(51,88),(52,61),(53,90),(54,63),(55,92),(56,65)], [(57,85),(58,86),(59,87),(60,88),(61,89),(62,90),(63,91),(64,92),(65,93),(66,94),(67,95),(68,96),(69,97),(70,98),(71,99),(72,100),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(81,109),(82,110),(83,111),(84,112)]])
94 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 7A | 7B | 7C | 8A | ··· | 8H | 8I | ··· | 8P | 14A | 14B | 14C | 14D | ··· | 14L | 28A | ··· | 28F | 28G | ··· | 28O | 56A | ··· | 56L | 56M | ··· | 56AD |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | ··· | 8 | 8 | ··· | 8 | 14 | 14 | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 | 56 | ··· | 56 | 56 | ··· | 56 |
size | 1 | 1 | 2 | 2 | 2 | 14 | 14 | 14 | 14 | 1 | 1 | 2 | 2 | 2 | 14 | 14 | 14 | 14 | 2 | 2 | 2 | 2 | ··· | 2 | 14 | ··· | 14 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
94 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D7 | D14 | D14 | D14 | C4×D7 | C4×D7 | Q8○M4(2) | C56.49C23 |
kernel | C56.49C23 | C2×C8⋊D7 | D28.2C4 | D7×M4(2) | D28.C4 | Q8.Dic7 | C7×C8○D4 | D7×C4○D4 | D4×D7 | D4⋊2D7 | Q8×D7 | Q8⋊2D7 | C8○D4 | C2×C8 | M4(2) | C4○D4 | D4 | Q8 | C7 | C1 |
# reps | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 6 | 6 | 2 | 2 | 3 | 9 | 9 | 3 | 18 | 6 | 2 | 12 |
Matrix representation of C56.49C23 ►in GL4(𝔽113) generated by
76 | 49 | 0 | 0 |
64 | 105 | 0 | 0 |
0 | 0 | 37 | 64 |
0 | 0 | 49 | 8 |
1 | 0 | 0 | 0 |
79 | 112 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 79 | 112 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 112 | 0 |
0 | 0 | 0 | 112 |
G:=sub<GL(4,GF(113))| [76,64,0,0,49,105,0,0,0,0,37,49,0,0,64,8],[1,79,0,0,0,112,0,0,0,0,1,79,0,0,0,112],[0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0],[1,0,0,0,0,1,0,0,0,0,112,0,0,0,0,112] >;
C56.49C23 in GAP, Magma, Sage, TeX
C_{56}._{49}C_2^3
% in TeX
G:=Group("C56.49C2^3");
// GroupNames label
G:=SmallGroup(448,1203);
// by ID
G=gap.SmallGroup(448,1203);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,387,1123,80,102,18822]);
// Polycyclic
G:=Group<a,b,c,d|a^56=b^2=c^2=d^2=1,b*a*b=a^13,c*a*c=a^29,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=a^28*c>;
// generators/relations